
End of Term Report

Harini Chandramouli 1 , Kiya Holmes 2, Brandon Reeves 3, Nora Stack 4

Abstract

In this research we are looking at Kakutanis classical result on the connec-
tion between Brownian motion, a form of random movement, and harmonic
functions, which are solutions to the Laplace equation. Kakutanis theorem is
basically a generalization of the mean value property of harmonic functions.
We will use this result to solve the Laplace equation in various regions with
certain boundary conditions.

Walk on Spheres (WoS) is used to simulate the Brownian motion of a
particle suspended in liquid. The average time needed for the particle to hit
the boundary of certain regions will be discussed. The distribution of the
point of first encounter with the boundary of the region is of interest to us.
We will also discuss our use of conformal maps to find probability density
functions on certain regions. Additionally, the rate of convergence of the
Brownian motion to the boundary as well as the overall computational effort
needed to estimate values of the harmonic function using the Monte Carlo
algorithm will also be discussed. Lastly, we looked into less expensive real
world applications of our research.

Acknowledgments

First, we wish to thank our advisor Dr. Igor Nazarov, for all of his guid-
ance throughout the REU program. Additionally, we would also like to
acknowledge Dr. Nicholas Boros for his help with our research during the
REU program. We would like to extend our thanks Michigan State Univer-
sity and Lymann Briggs College for being our host institution. Finally, we
would like to thank the National Security Agency for funding our research
through grant number H98230-11-10222.

1University of Pittsburgh, Pittsburgh, PA 15213
2Medgar Evers College, Brooklyn, NY 11225
3Gonzaga University, Spokane, WA 99207
4St. Mary’s College of Maryland, St. Mary City, MD 20686

1

Contents

1 Introduction 4

2 A Solution to Laplace’s Equation: The Half-Plane 5

3 Walk on Spheres Method 6

4 Our Programs 6
4.1 General Process . 6
4.2 Various Regions . 7

4.2.1 Line . 7
4.2.2 Upper Half-Plane . 9
4.2.3 Circle . 9
4.2.4 Parabola . 13
4.2.5 Square . 14
4.2.6 Triangle . 15
4.2.7 Upper Quarter-Plane 16
4.2.8 Upper Half Space . 18
4.2.9 Sphere . 19

5 Rates of Convergence 19

6 Probability Density Functions for Known Regions 21
6.1 Half-Plane . 21

6.1.1 Goodness of Fit . 22
6.2 Circle . 22

7 Conformal Mappings and Probability Density Functions 23
7.1 Quarter-Plane to Half-Plane 23
7.2 Showing u is Harmonic . 23
7.3 Empirical Probability on the Quarter-Plane 25
7.4 Conformal Mappings on the Quarter-Plane 25
7.5 Finding the Theoretical Probability Density Function for the

Quarter-Plane . 28
7.6 Conformal Mapping of a Parabolic Region 29

8 Real World Application 30
8.1 Obtaining Efficient Estimators - Gaussian quadrature 31
8.2 Selecting xis . 32

9 Conclusion 34

2

References 35

3

1 Introduction

Given a region R with boundary condition u0, a problem central to applied
mathematics is solving for heat dissipation, population migration, chemical
diffusion, etc. for points interior to R. Using Fourier transforms, one can
find an expression for the temperatures (population densities, chemical con-
centrations, etc.) at any point inside of the region R at a given time t. By
letting t tend towards infinity, we obtain a solution that is no longer depen-
dent on time, i.e. a steady-state solution. It is well-known that the functional
solution to the steady-state equilibrium, say u, is a harmonic function, that
is, ∆u = 0.

In 1944, however, Kakutani (see [1]) showed that one can express the
steady-state solution in terms of Brownian motion. He showed that to find
the value of the steady-state solution at a particular point,one simply needs to
consider a particle undergoing Brownian motion beginning from that point.
Under Brownian motion, the particle will travel randomly until it first en-
counters the boundary. When this happens, one records the value at the
boundary at the point of first encounter. After repeating this process a suffi-
ciently large number of times, the mean of the recorded values will converge
probabilistically to the value of the harmonic function inside of R.

One efficient way to simulate Brownian motion is the Walk on Spheres
method (introduced in [2]). We will use the Walk on Spheres method with
discrete time steps in order to simulate Brownian motion. In this process,
a walker beginning at an initial point takes a random step to a new point.
From this point, the walker again takes a random step to a new point. This
process continues until the walker is sufficiently close to the boundary.

In this paper, we discuss the probability density function for the point
of first encounter. In essence, we wish to find a function that describes
the relative probability that our random walk process will terminate on a
segment of our boundary given an initial starting point. Furthermore, we
shall explore how altering the lengths of the random walks will influence
the rates of convergence to the boundary. Lastly, our paper will consider
efficient ways to approximate a solution to the steady-state equilibrium while
calculating the fewest number of points along the boundary.

4

2 A Solution to Laplace’s Equation: The Half-

Plane

In this section we will solve Laplace’s equation on the half-plane, which will be
pivotal in our exploration of Laplace’s equation in more generalized regions.
Find u(x, y) where

uxx + uyy = 0 with (1)

u(x, 0) = u0(x) for all x (2)

Recall, that the Fourier transform of u(x,y) is ũ(ω, y) where

ũ(ω, y) =

∫ ∞
−∞

eiωxu(x, y)dx

Fourier transforming both (1) and (2) with respect to x we obtain the
new system:

−(ω)2ũ+ ũyy = 0 (3)

ũ(ω, 0) = ũ0(ω) (4)

Notice, that (3) is simply an ordinary differential equation with charac-
teristic equation that has the solution:

ũ(ω, y) = e−|ω|y · C(ω) (5)

Utilizing (4) we find that

ũ(ω, 0) = e−|ω|∗0 · C(ω)

= C(ω)

= ũ0(ω)

Hence, we know

ũ(ω, y) = e−|ω|yũ0(ω) (6)

By applying the inverse Fourier transform to (6) and recognizing that the
inverse Fourier transform of e−|ω|y is simply the Poisson kernel, we find that

u(x, y) =
1

π

∫ ∞
−∞

y

(x− t)2 + y2
u0(t)dt (7)

5

From (7) we can find the probability density function for the point of first
encounter for a particle undergoing Brownian motion from the point (x,y).
Recall, that the expected value of a random variable is defined to be

E(X) =

∫ ∞
−∞

xf(x)dx

where f(x) is the probability distribution of the random variable X and x is
the value of the random variable X.

Analogously, from (7) we know that the probability density function for
the point of first encounter for a particle undergoing Brownian motion on
the half-plane beginning from the point (x,y) is:

f(t) =
1

π

y

(x− t)2 + y2
(8)

3 Walk on Spheres Method

Walk on Spheres is a method to simulate Brownian motion. It makes the
process go much faster and maintains accuracy. It works as follows:

1. Pick point (x0, y0) in the region

2. Create circle with (x0, y0) as the center

3. Randomly pick a point (x1, y1) on the circle

4. (x1, y1) is either on the boundary or is somewhere else in the region

5. If (x1, y1) if on the boundary then walk on circles ends

6. If not, create circle with (x1, y1) as center

7. Randomly pick a point (x2, y2) on the circle

8. Continue process until you hit boundary of region

4 Our Programs

4.1 General Process

Our programs generally worked in this way.

1. Choose starting point (x0, y0)

6

2. Make a circle with (x0, y0) as the center and the largest radius possible
in the region

3. Using rand function in MATLAB the program choose a random point
(x1, y1) on the circle

4. (x1, y1) is either on the boundary(or are within a certain tolerance of
the boundary) of the region or it is inside the region

5. If (x1, y1) is on the boundary(or is within a certain tolerance of the
boundary) then the program ends

6. If (x1, y1) is not on the boundary, then the program uses (x1, y1) as the
center of a new circle with the largest radius possible in the region

7. Using rand function in MATLAB the program choose a random point
(x2, y2) on the circle

8. We continue this process until we have reached the boundary(or are
within a certain tolerance of the boundary) of the region and then the
program ends

9. We then run the program many times to compute an average

4.2 Various Regions

4.2.1 Line

We made a MATLAB program to simulate Brownian Motion on a line from
a fixed starting point between 0 and n, where n ∈ N. We pick an initial
starting point, x0 and then MATLAB will find the closest end point, which
will either be 0 or n and make a circle of radius x0 or n−x0 accordingly. We
shall use an example problem to show the accuracy of our program.

7

There is a rod of length 5.0 m, the left side is constantly at 100 ◦C
and the right side is constantly at 1000 ◦C. The rod is composed
of a uniform heat-conducting material. There is no exchange of
heat with the surroundings except at the end points. What is the
temperature at the point 3.0 m from the left end of the rod?
Solving Using Laplace’s Equation
The equation in question is as follows,

d2u(x)

dx2
= 0

We solve this by integrating both sides twice, we get

u(x) = c2x+ c1

Now applying the boundary conditions we get a system of equations

100 = c1

1000 = 5c2 + c1

Plugging in the first equation into the second gives you the following values
for the constants

u(x) = 180x+ 100

Plugging in the value of x=3, we will get that the exact value of the temper-
ature at 3.0 m is 640 ◦C.

Solving Using Brownian Motion and Walk on Spheres
Here we will use the Matlab program that was made. The program will start
with the point at x = 3 and every time that the particle terminates move-
ment at the left end point, the program will store it as 100. Every time the
particle terminates movement at the right end point, the program will store
it as 1000. Each run will iterate 1,000,000 times. Recorded below will be the
temperature found during each run of the program.

8

Run Number Temp. at 3.0 m

1 639.7651
2 639.7003
3 639.8578
4 640.2610
5 639.4429
6 639.7768
7 639.3925
8 640.6273
9 640.4707
10 639.8200

Run Number Temp. at 3.0 m

11 640.4941
12 639.7633
13 639.6985
14 639.8614
15 640.2628
16 639.4384
17 639.7777
18 639.3952
19 640.6282
20 640.4662

Average=640.192

Thus, the temperature is found to be 640.192 ◦C

Error Calculation
The percent error is as follows

(
640.192− 640

640

)
100 = 0.03%

4.2.2 Upper Half-Plane

The first 2D program that we made was for the upper half-plane region, that
is, when y > 0 on the Cartesian Plane. In this program, an initial point (x, y)
is typed in to the program and plotted in cyan. A circle is drawn using this
initial (x, y) as the center. The radius of the circle is the value y as that will
result in the circle being as large as possible while remaining in the region. A
random point was picked on this circle by having MATLAB randomly pick a
θ such that 0 . This point was then used as the center of the next circle, the
radius being the new point’s y-coordinate. This continued until the point
got within a certain tolerance of the x-axis. The tolerance was defined to be
0.001 so that as long as the radius of the circle remained larger than this,
the program would continue. A for-loop was created to iterate this process n
times. Two variables were defined so that we could see how many circles were
drawn and what was the last x-coordinate before the process terminated.
Here are some images from the program, simulating the walk on spheres
method on the upper half-plane. We can see here that the number of times

9

the program takes to terminate, or the count, can vary. We can also observe
that the point at which the termination occurs changes every time. Doing
this same process thousands of times would help estimate the temperature
or number of animals at the initial point.

Figure 1: Initial Point: (3,4), Count: 16, Tolerance:0.001, Ending
Point: (7.1225, 8.2200× 10−7)

Figure 2: Initial Point: (3,4), Count: 16, Tolerance: 0.001, Ending
Point: (36.4099, 8.1999× 10−4)

4.2.3 Circle

This program simulates Brownian Motion on a circular region. To start,
we must enter our initial starting point, the desired tolerance level, and the
center and radius of the circular region. A circle is drawn with the initial
point as the center and the maximum radius such that the circle stays within
the region. To find this radius, we had to find the minimum distance from
the point we wanted to be the center of the circle to circular region. This
would occur where the normal to the tangent of the border points at the

10

Figure 3: Initial Point: (3,4), Count: 5, Tolerance: 0.001, Ending
Point: (-1.4108, 8.0219× 10−4)

point in question. Let us call the the center of the circular region (xc, yc),
the radius of the circular region R, the point we want to be the center of
our circle (x0, y0), and the radius of the smaller circle we want to draw r.
To find r, we first found the distance between (x0, y0) and (xc, yc), and then
subtracted that away from R.Using this r, a circle is drawn around the initial
point and then a random point is chosen on that circle. Using that point
as the center, another circle is drawn with that point on as the center and
the radius calculated as before. This process is repeated until the radius is
within the set tolerance, and then the process stops.
Below are some images from the program. The largest circle is the boundary
region. All the following images have the same starting point and tolerance,
but in this case we can see how the count and ending point vary from figure
to figure.

11

Figure 4: Boundary Equation: x2 + y2 = 25, Initial Point: (3,1.5),
Count: 9, Tolerance: 0.001, Ending Point: (4.9972, -0.1506)

Figure 5: Boundary Equation: x2 + y2 = 25, Initial Point: (3,1.5),
Count: 20, Tolerance: 0.001, Ending Point: (1.4661,4.7802)

12

Figure 6: Boundary Equation: x2 + y2 = 25, Initial Point: (3,1.5),
Count: 11, Tolerance: 0.001, Ending Point: (-3.6827,3.3815)

4.2.4 Parabola

We made a program to simulate Brownian Motion in the parabola y = ax2,
without loss of generality. This program is functioning, however it takes a
while to run. We wanted to make a more efficient program, so we decided to
increase the radius of our circles to be the maximum radius possible inside
of the parabola. To do this, we came up with a method to find the smallest
distance from our starting point (x0, y0) to the boundary. This unknown
point on the boundary is (x1, y1). To find this radius, we used the distance
formula squared.

d2 = (x1 − x0)2 + (y1 − y0)2

d2 = (x1 − x0)2 + (ax21 − y0)2

We then took the derivative of the distance formula squared to minimize the
distance.

d′ = 2(x1 − x0) + 2 ∗ 2ax1(ax
2
1 − y0)

d′ = 4a2x31 − 4ax1y0 + 2x1 − 2x0

We then set the derivative equal to zero and divided our equation by two to
get these equations.

4a2x31 − 4ax1y0 + 2x1 − 2x0 = 0

2a2x31 − 2ax1y0 + x1 − x0 = 0

13

MATLAB then solves for the roots of this cubic equation. Our program then
disregards any imaginary numbers and picks the smallest number of the re-
maining numbers. We then have our x1 value and we get the corresponding
y1. We use the distance formula to calculate the distance between these two
points which is used as our radius in the program. The program then per-
forms walk on circles in the parabola.

Figure 7: Walk on Circles in a Parabola with a starting point (1, 2) and the maximum radius possible

4.2.5 Square

We also created a program that simulates walk on circles in a square. Most
of the program is similar to the others, except that we had to find the radius
for the circles in walk on circles a little differently. Let our initial point be
(x0, y0). We had to find the distance form this point to the boundaries of the
square. You drop a line down from (x0, y0) to each of the lines that make
up the square. Each of the lines that you drop down are perpendicular to
the lines of the square so that you get the shortest distance from the point
to the boundaries of the square. The intersections tell you the points to
measure the distance to from (x0, y0) using the distance formula. This is
further illustrated in the picture below:

14

The shortest of these distances was then used as the radius for the circles
in our walk on circles program.

4.2.6 Triangle

Using the equations

y1 = mx+ b

y2 = kx+ c

y3 = ax+ d

we are able to construct a triangle. We then find the minimum radius by
taking the derivative of each line. For example, in y1, the derivative is m. We
then have the slope of the tangent line. Using the slope of each, we calculate
the slope of the perpendicular line. Using y1, we have

y =
−1

m
x+ b

15

We can then use our point (x0, y0) to find b. We then get an equation in the
form

y =
−1

m
x+ (y0 +

1

m
x0)

which we then set equal to y1

mx+ b =
−1

m
x+ (y0 +

1

m
x0)

and we then find out where these lines intersect. Thus we get the point
(x1, y1). Once we repeat this process for y2 and y3 we use the distance
formula to figure out the distance between (x0, y0) and each of our new points.
Our program then picks the minimum of the three distances as our radius
for a circle centered at (x0, y0). If the triangle is very obtuse, the distance
calculated has the chance to extend outside of the actual triangle. However,
this distance will never be shorter than a distance to a point inside the
triangle. Thus, it does not create a problem. The program then picks a
point on that circle (xk, yk). If the point is on the boundary (or within our
tolerance), then the program ends. If the point is not, then the program
calculates the distance between (xk, yk) and our boundary points relative
to (xk, yk) and finds the minimum distance. This value then becomes our
new radius for the circle centered at (xk, yk). The program then picks a
random point on the circle. We continue this process until we have reached
a boundary. We then repeat the process n times to calculate the average.

4.2.7 Upper Quarter-Plane

The program that simulates the walk on spheres method in the upper quarter-
plane was coded very similarly to the upper half-plane program, however here
the radius of the circle was set to be the minimum of x and y as the pro-
gram would terminate when the point got within the tolerance of either the
x− axis or y − axis.

16

Figure 8: Initial Point: (2,1), Count: 21, Tolerance: 0.01, Ending
Point: (0.6753,0.0051)

Figure 9: Initial Point: (2,1), Count: 10, Tolerance: 0.01, Ending
Point: (3.0274,0.0097)

Figure 10: Initial Point: (2,1), Count: 4, Tolerance: 0.01, Ending
Point: (0.3139,3.9515× 10−5)

The counter number can vary highly every time, even though the starting
point and tolerance are set to be the same.

17

4.2.8 Upper Half Space

Next, we moved on to 3D spaces. Previously, we saw in the 2D case that we
could randomly generate an point uniformly if we chose a random angle from
0 to 2π. However, in the 3D case, we cannot generate a point so easily. First,
we would want to use spherical coordinates to generate a random point on
a sphere. The ρ is given to be the shortest distance between the center of
our sphere and the end point of the region in question. To randomly choose
a point, we can randomly choose an angle from 0 to 2π for θ. However, for
φ we need to make an adjustment as converting a Cartesian rectangle to a
spherical rectangle creates a problem. φ goes from 0 to π but is not uniformly
distributed. There is a higher chance of picking a point towards the poles
than towards the equator. The adjustment is φ = arccos(2u− 1) where u is
uniformly distributed on (0,1).
We made a program that simulates Walk on Spheres in the upper half-space.
We pick an initial point and our program then simulates a random walk on
a sphere. We set ρ equal to z. The point that is produced is either on the
plane z = 0, in which case the program ends, or it is somewhere else on the
upper half-space. If it is somewhere else in the upper half-space, then the
program then uses that point as the new center for the sphere and our new
rho as the radius of the sphere. It then preforms a random walk again. The
process continues until the program has the plane z = 0. The program then
performs Walk on Spheres many times so that we can compute an average.
We also made a program to plot this process. However, the resulting image
is not very clear.

Figure 11: Initial Point: (3, 4, 5), Count: 17, Tolerance:0.001, Ending
Point: (3.0538, 1.9212, 7.7757× 10−7)

18

Visualizing 3D Movement in 2D We looked at ways to analyze the
distance between points on a 3D plane and found a way that was efficient.
We took the 3D plane and made the z-component equal to zero and projected
our starting point on the xy plane. This way we can see the distance between
the initial point and the terminated point. By doing so, we simplified the
dimensions of the original problem. What we also did was apply height
to the starting point. We wanted to analyze how the difference in height
would affect the distance between the points. So we plotted the distances on
histograms to compare. We saw that with more height, the distances were
more dispersed and much higher. These results were reasonable and it gave
us an idea of what to expect in the theoretical results.

4.2.9 Sphere

We also created a program that simulated Walk on Spheres within a spherical
region. The inputs are the center, (xc, yc, zc), and radius of the spherical
region in question, along with our initial point, (xi, yi, zi), to start the walk
on spheres and the tolerance. The maximum ρ is calculated very similarly to
the radius in the 2D Circle program. Let the radius of the spherical region
be denoted by R, and let the radius of the sphere for the walk on spheres be
denoted by ρ. ρ is calculated as follows:

ρ = R−
√

(xi − xc)2 + (yi − yc)2 + (zi − zc)2

The program outputs the (x, y, z) at which the program terminated. How-
ever, this program only does the process once and does not create any images.

5 Rates of Convergence

Using MATLAB, we created programs to compare the rates of convergences
when we changed certain conditions. In this program, we start with an ini-
tial point inside a given region, (x0, y0). This program is a lot like the walk
on spheres programs where it draws a circle around this initial point with
a certain radius and then chooses a random point on that circle uniformly.
However, here, the radius is set at a very small number, such as 0.01. Also,
the circle is not plotted. Thus, the particle jumps from one point to another
that is close to the first point. This goes on until the point is within the
tolerance of the border of the region in question. Depending on the region,
this process can take 700 steps or more. If you increase the radius size, it
goes faster (which is how the walk on spheres method works, it optimizes the
radius size to make convergence to the border happen quicker). Increasing

19

the radius to 1 can change the number of steps it takes to converge dramat-
ically, taking less than 50 steps sometimes. This can be seen in the graphic,
created by a program that we made, below where we compared the rates of
convergence of various radii sizes in a circular region. This program finds
the average number of iterations needed for convergence for 1000 iterations
for each radii. The second graph is especially significant as we see that the

Figure 12: Number of Steps vs. Radius Size

Figure 13: Number of Steps vs. 1
RadiusSize

Number of Steps and the inverse of the Radius Size has a squared relation-
ship, lining up with Einstein’s Theory that distance is related to the square
root of time (see [3]).

20

6 Probability Density Functions for Known

Regions

6.1 Half-Plane

One of the main goals of our research this summer is to establish empirically a
probability density function for the point of first encounter for a particle in a
region D under Brownian motion. Using the random walk on circles method
as a way to simulate Brownian motion, we have constructed an algorithm that
will allow us to simulate Brownian motion on the half-plane. In order to find
an estimate for the probability density function for the boundary of the half-
plane (the x-axis), we can simulate Brownian motion several thousand times
(in this case 10,000), record the point of first encounter for each iteration,
and then construct a histogram displaying the frequencies of the points of
first encounter. Since the number of iterations are large, the shape of the
histogram should match the theoretical PDF for the boundary.

Fortunately enough, the theoretical PDF for the half-plane is known to
be the Cauchy-distribution of the form : 1

π
∗ a
x2+a2

where is the y-coordinate
of our initial starting point (i.e. the height of our initial point). When we
executed the algorithm described above, we obtained a histogram describing
the frequencies of the point of first encounter along the x-axis. We then
plotted the known distribution on top of our histogram (with the appropriate
scaling measures) and we obtained the following result:

Figure 14: Empirical vs Theoretic and PDFs for half-plane

21

6.1.1 Goodness of Fit

We can perform Pearson’s Chi-Squared Test to check if the events observed
in our sample is consistent with the theoretical distribution. The test statis-

tic is χ2 =
k∑
i=1

(Oi−Ei)2
Ei

. This test statistic follows a Chi Square distribution

with k - 1 degrees of freedom. Our findings last week were significant to the
α = 0.05 level.

6.2 Circle

As we created a program to make a histogram of the point of first encounter
on the half-plane, we also created on to do the same for a circle. We linearized
the circle, drawing a line from 0 to 2π. The circle is centered at (0, 0) with
radius of 2, and our initial starting point was at (1, 1). Intuition suggests
that the highest density will be found around π

4
. The histogram found is

below:

The histogram seems to agree with what we believe to be correct, but we
still need to do a Goodness of Fit test for this density function also. However,
we do not know the theoretical distribution on a circle.

22

7 Conformal Mappings and Probability Den-

sity Functions

To find the theoretical distribution for unknown regions, we can use con-
formal mapping ([5]). A conformal map maps one region bijectively into
another region. It preserves angles between smooth curves going through a
point.

7.1 Quarter-Plane to Half-Plane

There is a conformal map that takes the quarter-plane into the half-plane,
and this is the map f(z) = z2. We can use this map, in the future, to find
the probability density function in the quarter-plane, given the fact that we
know the probability density function in the half-plane. But first, let us look
more into this map.
Since z is a complex number, we can say z = x + ıy, for some arbitrary x
and y such that x, y ∈ R. By Euler’s formula, we see that z = x + ıy =
r cos(θ) + ır sin(θ) = reıθ. Plugging in x and y into our map, we get

f(z) = z2 = (x+ ıy)2 = x2 − y2 + 2ıxy

Let

g(w) = g(w1, w2) = u(w1, w2) + ıv(w1, w2)

where w = w1 + ıw2. Let =(w) > 0 and <(g(w)) = u(w1, w2). We will now
create the composite function

g(f(z)) = g(z2) = g((x+ ıy)2) = g(x, y)

Since f(z) and g(w) are both analytic functions, we know that g(f(z)) is
analytic because the composition of analytic functions is analytic. We know
that u is harmonic as shown in the next section, Showing u is Harmonic.
It follows similarly that v is harmonic also, as it is the harmonic conjugate.
The functions are harmonic for x > 0 and y > 0, that is, the quarter-plane.

7.2 Showing u is Harmonic

Given that f(z) and g(w) are analytic functions, g(f(z)) is analytic because
the compositions of analytic functions are analytic. Let the real part of g be
represented by u and the imaginary part of g be represented by v such that

23

g = u+ ıv.
Let z = x+ ıy and w = w1 + ıw2.

f(z) = z2 = (x+ ıy)2 = x2 − y2 + 2ıxy

g(f(z)) = g(z2)

since g(w) = g(w1, w2), where w1 is the real and w2 is imaginary

g(w1, w2) = g(x2 − y2, 2xy)

Thus, g is a function of x and y.
So, g is an analytic function in the region R, where R is the Quarter Plane,
where x, y ≥ 0. Since it is analytic in R, then the Cauchy-Riemann equations:

∂u

∂x
=

∂v

∂y
(9)

∂v

∂x
= −∂u

∂y
(10)

are satisfied. Assuming that u and v have continuous second partial deriva-
tives, we can differentiate (9) with respect to x and differentiate (10) with
respect to y.

∂2u

∂x2
=

∂2v

∂x∂y
(11)

∂2u

∂y2
= − ∂2v

∂y∂x
(12)

We can add (11) and (12) together to get the following equation:

∂2u

∂x2
+
∂2u

∂y2
=

∂2v

∂x∂y
− ∂2v

∂y∂x
(13)

By Clairaut’s Theorem on the symmetry of second derivatives, we have

∂2v

∂x∂y
=

∂2v

∂y∂x

thus, we can use this fact with equation (13)

∂2u

∂x2
+
∂2u

∂y2
=

∂2v

∂x∂y
− ∂2v

∂x∂y
(14)

∂2u

∂x2
+
∂2u

∂y2
= 0 (15)

Thus, u is harmonic because it satisfies Laplace’s Equation, uxx + uyy = 0.

24

7.3 Empirical Probability on the Quarter-Plane

This week we made a program that performs walk on circles n number of
times and stores the points where the program terminates. We then made a
program that linearizes this data so we can make a histogram. If the program
terminated at a point on the y-axis, then the program linearizes the point to
be on the negative x-axis. If the program terminated at a point on the x-axis,
then the program linearizes the point to be on the positive x-axis. We then
used our histogram plotter to make a histogram of this data. The resulting

Figure 15: Approximate probability density of the quarter-plane with an
initial point (1, 1), tolerance=0.01, 100,000 iterations of Walk on Circles,
and 100 bins.

histogram was in line with our expectations. The two biggest peaks were at
1 on the x-axis and 1 on the y-axis (which corresponds to -1 on the x-axis in
histogram above). There is such a drastic dip at 0 because there is no way
that the point could actually reach 0, it would reach the tolerance before it
ever hit 0.

7.4 Conformal Mappings on the Quarter-Plane

Assume u(x, y) satisfies Laplace’s Equation in the half-plane,

f(z) = z2

= (x2 − y2) + (2xy)ı

25

We want to apply this conformal mapping to find h(x,y) in the quarter plane.

h(x, y) = h(z) = u(f(z)) = u(x2 − y2, 2xy)

h0(x) = h(x, 0) = u(x2, 0)

h1(y) = h(0, y) = u(−y2, 0)

26

u0(ξ) =

{
h0(
√
ξ) if ξ > 0

h1(
√
−ξ) if ξ < 0

Given the boundary condition u0(t) for −∞ < t < ∞, we know that our
solution is

u(x0, y0) =
1

π

∫ ∞
−∞

y0

(x0 − t)2 + y02
u0(t)dt

=
1

π

∫ 0

−∞

y0

(x0 − t)2 + y02
h1(
√
−t)dt

+
1

π

∫ ∞
0

y0

(x0 − t)2 + y02
h0(
√
t)dt

Let t = -τ 2 for the first and t = τ 2 for the second integral.

u(x0, y0) =
1

π

∫ ∞
0

2τy0

(x0 + τ 2)2 + y02
h1(τ)dτ

+
1

π

∫ ∞
0

2y0τ

(x0 − τ 2)2 + y02
h1(τ)dτ

Recall that u(x0
2 − y02, 2x0y0) = h(x0, y0), so we need to substitute

h(x0, y0) = u(x0
2 − y02, 2x0y0)

=
1

π

∫ ∞
0

4x0y0τ

(x02 − y02 + τ 2)2 + (2x0y0)
2h1(τ)dτ

+
1

π

∫ ∞
0

4x0y0τ

(x02 − y02 − τ 2)2 + (2x0y0)
2h0(τ)(τ)dτ

Thus, we know that the PDF for the quarter-plane is:

1

π

4x0y0τ

(x02 − y02 + τ 2)2 + (2x0y0)
2

on the y-axis and

1

π

4x0y0τ

(x02 − y02 − τ 2)2 + (2x0y0)
2

on the x-axis.

27

7.5 Finding the Theoretical Probability Density Func-
tion for the Quarter-Plane

We will first look at the equation we derived from the previous section.

1

π

∫ ∞
0

4x0y0τ

(x02 − y02 − τ 2)2 + (2x0y0)
2dτ

To solve this integral, we will first do a u-substitution. As this is a function
of τ , we will take the derivative with respect to τ

u = x0
2 − y02 − τ 2

du = −2τdτ

Plugging this into the integral, we see

1

π

∫ x02−y02

−∞

2x0y0

u2 + (2x0y0)
2du[

1

π
arctan

(
u

2x0y0

)]x02−y02
−∞

1

π
arctan

(
x0

2 − y02

2x0y0

)
+

1

2

This is the formula we found for the probability density function on the x-
axis. To find the probability density function on the y-axis, just take 1 minus
the function on the x-axis, which is

1

2
− 1

π
arctan

(
x0

2 − y02

2x0y0

)
A way to test to see if this is accurate is to plug in a point on the line y = x.
Intuition suggests that any point on this line would have a 1

2
chance of land-

ing on either the x or y-axis. Plugging y = x into this formula gives us 1
2

for
both the probability of landing on the x and y-axis.

28

7.6 Conformal Mapping of a Parabolic Region

Given a parabola x = -1 + y2

4
,

f(x,y) = i cosh(π
2

√
x+ iy) = u+ iv is the map that takes this parabola to the

half-plane. This map can be rewritten as f(x, y) = 1
2
(ei

π
2
+
√
x+iy + ei

π
2
−
√
x+iy).

After much simplification, we came up with the following formulas:

u(x, y) =
1

2
e
π
2

(√
x+
√
x2+y2

2
+1

)
cos

√x+
√
x2 + y2

2
+ 1

+

1

2
e

−π
2

(
1−
√
x+
√
x2+y2

2

)
cos

√x+
√
x2 + y2

2
+ 1

v(x, y) =

1

2
e
π
2

(√
x+
√
x2+y2

2
+1

)
sin

√x+
√
x2 + y2

2
+ 1

+

1

2
e

−π
2

(
1−
√
x+
√
x2+y2

2

)
sin

√x+
√
x2 + y2

2
+ 1

From our parabola, we have the boundaries (x,2

√
x+ 1) and (x,-2

√
x+ 1).

If we plug y = ±2
√
x+ 1, we find out where our boundary is ‘sent’ to:

h0(x) : f(x, 2
√
x+ 1) = (− sinh(

π

2

√
x+ 1), 0)

h1(x) : f(x,−2
√
x+ 1) = (sinh(

π

2

√
x+ 1), 0)

29

We can describe our boundary in the half-plane in terms of the boundary of
the parabola under the conformal mapping:

u0(τ) =

{
h0
(
(2
π

sinh−1(−τ))2 − 1
)

ifτ < 0

h1
(
(2
π

sinh−1(τ))2 − 1
)

ifτ > 0

The Cauchy distribution states

u(x0, y0) =
1

π

∫ ∞
−∞

y0

(x0 − τ)2 + y02
u0(t)dτ

Thus our solution in the parabolic region is

h(x0, y0) = h(s0, t0) with s0(x0, y0) and t0(x0, y0)
f(x0, y0) = ı cosh(π

2

√
x0 + iy0) = s0 + t0ı

h(s0, t0) =

∫ ∞
−1

cosh(π
2

√
τ + 1)t0

4
√
τ + 1(

(
s0 + sinh(π

2

√
τ + 1)

)2
+ t0

2)
h0(τ)dτ

+

∫ ∞
−1

cosh(π
2

√
τ + 1)t0

4
√
τ + 1(

(
s0 − sinh(π

2

√
τ + 1)

)2
+ t0

2)
h1(τ)dτ

So what have we done so far? We have efficiently simulated Brownian
motion and made our point in question converge quickly to the boundary by
using the walk on spheres method. What if the boundary is unknown but
computable? These computations can be very expensive. We are looking for
a way to maintain accuracy whilst limiting the number of boundary points
that are computed, and find the best way to do this. The use of Gaussian
Quadratures and polynomial spaces is what leads to the solution, assuming
that we have a nice, smooth boundary function. So, let p(x) be the linear
space of polynomials up to degree n with inner product defined as Similarly,
for p2 we can write a similar set of equations. which reduce to

8 Real World Application

Using the random walks method as we described before to solve Laplace’s
equation in a region R, we must calculate the boundary value for each itera-
tion of the random walk method. As a result, we must calculate values on the
boundary a significant number of times. Although this presents no problem
if the boundary condition is known a priori, the shear number of calcula-
tions this process requires is impractical if an expression for the boundary

30

condition is not known. Rather, it is reasonable to assume that we do not
have an expression for the boundary values, but we ascertain boundary val-
ues through observations methods. For instance, we could survey population
densities or temperatures at a particular point on the boundary of the re-
gion. Determining this boundary value might be expensive. In this case, it
is natural to try and restrict the number of times one must determine the
boundary value.

One such method to limit the number of times one must determine the
boundary value is to choose n distinct points along the boundary. At each
of these points, the researcher observes and records the boundary values.
Then, using computer simulations, the researcher utilizes the random walks
method to obtain a point on the boundary, say p0. Typically, the researcher
would calculate the boundary value at p0. In this method, however, the
researcher finds the closest of the n pre-selected points and instead uses the
boundary value at this point as an approximation to the boundary value at
p0. Therefore, the researcher is able to limit the number of times he must
compute the boundary. How do we know, however, that this method is able
to retain a sufficient amount of accuracy?

8.1 Obtaining Efficient Estimators - Gaussian quadra-
ture

Given that we want to limit the number of times we find the boundary values
to n times, we want to find a way to approximate our solution. In essence,
we want to find Di and xi for i=1,2,...,n such that∫ ∞

−∞
D(x)u0(x)dx ≈

n∑
i=1

Diu(xi) (16)

where D(x) is the probability density function for the point of first encounter
and u0(x) is the boundary-value condition.

Given any collection of n distinct points along the boundary, we can select
our weights Di such that the approximation is exact in (16) so long as u0(x)
is a polynomial with degree < n. In fact, it can be shown that if we pick our
weights to satisfy the system of n equations given by:∫ ∞

−∞
xkD(x)dx =

n∑
i=1

xi
kDi (17)

for k = 0, 1, 2, . . . , n -1

31

To show that (17) is exact for deg(u0(x))<n let u0(x) be a polynomial of
degree n-1. Hence,

u0(x) =
n−1∑
j=0

αjx
j

Therefore, ∫ ∞
−∞

D(x)u0(x)dx =

∫ ∞
−∞

D(x)
n−1∑
j=0

αjx
jdx

=
n−1∑
j=0

αj

∫ ∞
−∞

xjD(x)dx

=
n−1∑
j=0

αj

n∑
i=1

xi
jDi

=
n∑
i=1

n−1∑
j=0

αjxi
jDi

=
n∑
i=1

u0(xi)Di

We can, however, obtain more accuracy through wise choices for our xi
terms.

8.2 Selecting xis

One way to pick our xis in an efficient manner is to pick our n xis as the n real
roots of the nth degree polynomial, say pn(x), orthogonal to all polynomials
of lesser degree with respect to the distribution D(x). We define the inner
product on pairs of polynomials p and q as

(p, q) =

∫ ∞
−∞

p(x)q(x)D(x)dx

Since two polynomials are orthogonal if and only if their inner product is
zero, we want to find pn(x) such that (pn(x),f(x)) = 0 for all f(x) such that
deg(f(x)) < n. One way to find such pn(x) is to solve the following system of

32

equations:

(pn, 1) =

∫ ∞
−∞

pn(x)D(x)dx = 0

(pn, x) =

∫ ∞
−∞

pn(x)xD(x)dx = 0

(pn, x
2) =

∫ ∞
−∞

pn(x)x2D(x)dx = 0

...

(pn, x
n−1) =

∫ ∞
−∞

pn(x)xn−1D(x)dx = 0

where pn(x) =
∑n

i=0 αix
i.

Notice, however, that this system consists of n+1 unknowns but only n equa-
tions. As a result, in order to determine pn(x) uniquely, we will choose pn(x)
to be a monic polynomial.

Now, we shall show that choosing our xis and Dis in such a manner will
result in an exact answer for (XXX) given u0(x) is a polynomial of degree
2n-1. Let u0(x) be a polynomial of degree up to 2n - 1.

By the division algorithm, we know there exists polynomials α(x) and r(x)
such that u0(x) = α(x)pn(x)+r(x) with deg(α(x)) = deg(u0(x)) - deg(pn(x))
≤ 2n -1 - n = n - 1 and deg(r(x))<deg(pn(x))=n.

Hence,∫ ∞
−∞

u0(x)D(x)dx =

∫ ∞
−∞

α(x)pn(x)D(x)dx+

∫ ∞
−∞

r(x)D(x)dx

Since we constructed pn(x) to be orthogonal to all polynomials of lesser
degree with respect to the weight D(x) and since α(x) has degree less than
n, this reduces to

=

∫ ∞
−∞

r(x)D(x)dx

Recall that we selected our weights, Di in such a way that this integral
would match the summation provided our degree was n-1 or less. Further-
more, we know that the degree of r(x) must be less than n. Hence, we have

=
n∑
i=1

r(xi)Di

Since we selected xis to be the roots of pn(x) we have that
∑n

i=1 α(x)pn(xi)Di =
0. Hence,

33

=
n∑
i=1

α(x)pn(xi)Di +
n∑
i=1

r(xi)Di

=
n∑
i=1

uo(xi)Di and hence,

∫ ∞
−∞

u0(x)D(x)dx =
n∑
i=1

uo(xi)Di

Thus, we know that we can select our xis and our Dis in such a way to
ensure that our new method is exact provided that u0(x) is a 2n− 1th or less
degree polynomial. Furthermore, if u0(x) is sufficiently smooth (i.e. the 2n-1
derivatives exist) then we know our new method will be accurate provided
u0(x) is well approximated by a polynomial.

Since any distribution can be transformed to an uniform distribution on
an interval, we can simplify the calculations of the abscissae xi and weights wi
by implemeting the Legendre integration (a version of the Gaussian quadra-
ture for a uniform weight function). The points and weights are available in
Table 25.4 in [4] for high order of Legendre polynomials. They can be trans-
lated to the border of the upper half-plane by applying the tangent function
(the inverse of the Cauchy cdf).

9 Conclusion

34

References

[1] Shizuo Kakutani. Two-dimensional Brownian motion and harmonic func-
tions. Proc. Imp. Acad. Tokyo, 20:706–714, 1944.

[2] M. E. Muller. Some continuous Monte Carlo methods for the Dirichlet
problem. Ann. Math. Statist., 27:569589, 1956.

[3] Albert Einstein, Investigation on the Theory of the Brownian Movement,
New York: Dover 1956.

[4] Milton Abramowitz, Irene Stegun, eds. Handbook of Mathematical Func-
tions with Formulas, Graphs, and Mathematical Tables, New York: Dover
Publications, 1972.

[5] Murray Spiegel, Seymour Lipschutz, John Schiller, Dennis Spellman.
Schaum’s Outline of Complex Variables, 2ed (Schaum’s Outline Series).
New York: McGraw-Hill, 2009

[6] David Poole. Linear Algebra, A Modern Introduction, 2ed. Thompson
Brooks/Cole 2006

[7] Pierre Picco, Jaime San Martin. From Classical to Modern Probability:
Cimpa Summer School 2001. Birkhäuser Bäsel 2004.

35

